The reason why activated carbon is used as a regeneration Material

Activated carbon itself has heat resistance, acid and alkali resistance, oxidation resistance, and also has a certain strength. Therefore, in addition to ensuring the above properties of activated carbon, the regeneration treatment should also make the adsorption performance of activated carbon reach 90% of the original carbon. Above, at the same time, the mechanical abrasion and breakage of the carbon during the regeneration process are reduced as much as possible, so that the regeneration yield can reach more than 90%. In addition, the economics of the regeneration process must be considered. Taking the widely used heating regeneration method as an example, it is reported that the regeneration is only beneficial when the amount of activated carbon used per day is about 100kg or more. Therefore, the economic performance of regeneration is also an important factor for investigating activated carbon regeneration.
The adsorption of activated carbon can generally be divided into reversible adsorption (also called physical adsorption) and irreversible adsorption (also called chemical adsorption) according to the adsorption mechanism. In practical applications, the two adsorptions are often mixed alternately. Generally, the reversible adsorption process occurs in gas phase solvent recovery, deodorization, air purification, etc., while the irreversible adsorption process is common in the liquid phase adsorption of wastewater treatment. The regeneration treatment method for reversible adsorption is mainly to pass heating steam above 120°C to remove the adsorbed substances and restore the adsorption performance of activated carbon. However, due to the different vapor pressures and boiling points of the adsorbed substances, their effective adsorption capacity will change, and the regeneration conditions should also change.

Categories